Modal analysis and experimental validation

Context and objective

- The purpose of the following experiments is to compare the measured frequency of the slow periodic modes to those calculated with AVL or XFLR5:
 - phugoid
 - Dutch roll

First experiment : F3J type sailplane, January 2011

The fuselage has been specifically designed for a large tail volume

Sailplane data

Name : Puiol	PAMEPUMA, design and make Marc
> Span :	3.150 m
> Wing area :	0.605 m ²
Mean Aerodynamic Ch	ord: 202 mm
> Airfoils	
Wing :	HN 1036
Elevator:	HT 14 at root, HT12 at tip
• Fin:	HT 14 at root, HT12 at tip
Mass :	2.1 kg
CG position :	90 mm from wing leading edge
Inertia tensor, estimat	ted using XFLR5 calculation form
Ixx = 0,565 kg.m ²	
Iyy = 0,161 kg.m ²	
Izz = 0,723 kg.m ²	
Ixy = Ixz = Iyz = 0,	0 kg.m²

Calculations

- All the calculations have been performed <u>prior</u> to the experiment
- Results with AVL and XFLR5 are close
- The files for the calculations can be downloaded from http://www.xflr5.com/docs/PM_Analysis.zip

AVL model

Vortex Lattice Output -- Total Forces

Sref = 0.60508	Cref = 0.20200	Bref = 3.1500
Xref = 0.90048E-01	Yref = 0.19467E-07	Zref = 0.87358E-02

Run case: ZeroPitchingMoment

	Alpha	=	-1.00454	pb/2V	=	0.00000	p'b/2V =	0.0000	0
	Betā -		0. 00000	qc/2V	=	0.00000			
	Mach	=	0.000	rb/2V	=	0.00000	r'b/2V =	0.0000	0
	CXtot	=	-0.00770	Cltot	2	0.00000	Cl'tot =	0.0000	0
	CYtot	=	0.00000	Cmtot	=	0.00000			
	CZtot	=	-0.32413	Cntet-	=	_0_0000 ^{<}	Cn'tot =	0.0000	0
Ś	CLtot	=	0.32421	_					
	CDtot		0.00202						
	CDvis	=	0.00000	CDind	-	0.00202			-
	CLff	=	0.32398	CDff	=	0.00147	Trefftz		
	CYff	=	0.00000	е	=	1.3893	Plane		

Stability-axis derivatives...

	alpha	beta	
z' force CL y force CY x' mom. Cl' y mom. Cm z' mom. Cn'	CLa = 5.888990 CYa = 0.000001 Cla = 0.000000 Cma = -1.229251 Cna = 0.000000	CLb = 0.000001 CYb = -0.243049 Clb = -0.093149 Cmb = -0.000003 Cnb = 0.079325	
	roll rate p'	pitch rate q'	yaw rate r'
z' force CL y force CY x' mom. Cl' y mom. Cm z' mom. Cn'	CLp = 0.000000 CYp = -0.112617 Clp = -0.640904 Cmp = 0.000001	CLq = 9.351773 $CYq = 0.000001$ $Clq = -0.000002$ $Cmq = -23.403563$ $Cnq = -0.000000$	CLr = 0.000000 CYr = 0.197400 Clr = 0.095053 Cmr = 0.000002

Pitched balanced conditions are achieved for $\alpha = -1.0^{\circ}$

Calculated balanced $C_{L} = 0.324$ $V_{Inf} = \sqrt{\frac{2 mg}{\rho SC_I}} = 13.1 m/s$

AVL Modal results

MEPA5 longlight 2

Ħ					
#	Run cas	se Eigenvalue		Mode	Period (s)
	1	-24.460022	0.0000000	Roll Damping	
	1	-1.4002885	4.7057629	Dutch Roll	1.34
	1	-1.4002885	-4.7057629	Dutch Roll	1.34
	1	-13.334693	8.6277199	Short period	0.73
	1	-13.334693	-8.6277199	Short period	0.73
	1	0.30454164E-01	0.0000000	Spiral	
	1	-0.41586193E-02	0.62859261	Phugoid	10.00
	1	-0.41586193E-02	-0.62859261	Phugoid	10.00

Performance data

Clp =

Clr =

Cnb =

Cnp =

Cnr =

-0.638573

0.085139

0.078925

-0.042402

-0.063063

To save computations, XFLR5 determines the a.o.a. such that the induced pitching moment from pressure forces = ICm = 0

Cm, which includes in addition the moment from the viscous drag is not quite zero. The difference is in the second order of magnitude

Trimmed conditions

The balanced a.o.a., speed, and glide ratio are very sensitive to the slope of the curve $ICm=f(\alpha)$, and therefore to CoG position

The experiment : January 9th, 2011 @ Le Coudray-Montceaux

Marc (left) and André (right) checking the measurement system

The measurement system

Xerivision system from http://www.xerivision.com/ "Measurement, recording, telemetry, HUD for RC modelers"

> Available data

- Accelerometers in X, Y, Z directions
- Speed sensor with Pitot tube
- Altimeter
- GPS
- Sideslip using a "flap" device

Sampling : 5 Hz

The flight : January 9th, 2011 @ Le Coudray-Montceaux

Average speed and phugoid frequency measurement

Average speed is ~13 m/s

Phugoid period is ~11 s

Dutch roll frequency measurement

Dutch roll period ~ 1.13 s

Comparison

	Measurement	AVL	XFLR5
Trimmed speed (m/s)	13	13.1	13.9
Phugoid period (s)	11	10	10.9
Dutch Roll period (s)	1.1	1.34	1.25

Conclusion

- All results are close and consistent
- The differences are well within the error margin of both the measurement and the calculation

More measurements to come this year