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About stability analysis using XFLR5

XFLR5



Revision 2.1  – Copyright A. Deperrois - November 2010

Sign Conventions
The yaw, such that the 
nose goes to starboard

is >0

The pitching moment nose up 
is > 0

The roll, such that the 
starboard wing goes down 

is > 0
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The three key points which must not be confused 
together

Centre of Gravity CG
= Point where the moments act;

Depends only on the plane's 
mass distribution, not its 

aerodynamics
Also named XCmRef in XFLR5, since this is the 

point about which the pitching moment is 
calculated

Neutral Point NP 
= Reference point for which the 

pitching moment does not depend 
on the angle of attack α

Depends only on the plane's 
external geometry

Not exactly intuitive, so let's 
explore the concept further

Centre of Pressure CP
= Point where the resulting aero force applies
Depends on the model's aerodynamics and on 

the angle of attack 
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The neutral point = Analogy with the wind vane

NP
CP

Wind

CG

CG forward of the NP
→ The pressure 

forces drive the 
vane back in the 
wind direction

→ Very stable wind 
vane

CG positioned at the NP
→ The wind vane 

rotates indefinitely
→ Unstable

CG behind the NP
→ The wind vane 

is stable… in 
the wrong 
direction

Wind vane having undergone a perturbation, 
no longer in the wind direction

The Neutral Point is the rear limit for the CG
2nd principle : Forward of the NP, the CG thou shall position

CG slightly forward of the NP
→ The pressure forces 

drive the vane back in 
the wind direction

→ The wind vane is 
stable, but sensitive to 
wind gusts
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A preliminary note : Equilibrium is not stability !

Both positions are at equilibrium, 
only one is stable

Unstable 

Stable 
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Mechanical stability

Force Fx

Displacement

x

Force Fx

Displacement

Fx<0

Fx<0 Fx>0

Fx>0

Unstable 

Stable 
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Aerodynamic stability

Angle of 
attack α

Cm (Pitch moment)

CG NP

Unstable Stable 

Angle of 
attack α

Cm (Pitch moment)
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Understanding the polars Cm = f(α) and Cl = f(Cm)

α

Cm

Note : Valid only for a whole plane or a flying wing

Cm

Cl

Cm = 0 = balance
= plane's operating point

Negative slope = Stability
The curve's slope is also the strength of the 

stabilizing force
 High slope = Stable sailplane !

For information only :
Cm0 = Moment 

coefficient at zero-lift

Cm = 0  balance
Cl > 0  the model flies !

Cm0
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How to use XFLR5 to find the Neutral Point

α

Cm

Polar curve for XCG < XNP

The CG is forward of the NP
The plane is stable

α

Cm

α

Cm

Polar curve for XCG = XNP

Cm does not depend on α
The plane is unstable

Polar curve for XCG > XNP

 The CG is behind the NP 
The plane is stable…

The wrong way

By trial and error, find the XCG value which 
gives the middle curve

For this value, XNP = XCG
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The tail volume (1) : a condition for stability ?

First the definition

LAElev : The elevator's Lever Arm measured at the wing's and elevator's quarter 
chord point

MAC : The main wing's Mean Aerodynamic Chord
AreaWing : The main wing's area
AreaElev : The elevator's area

 

WingWing

ElevElev
AreaMAC

AreaLA
TV

×
×

=

LAElev
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Tail Volume (2)

Let's write the balance of moments at the wing's quarter chord 
point, ignoring the elevator's self-pitching moment

MWing + LAElev x LiftElev = 0
MWing is the wing's pitching moment around its root ¼ chord point

We develop the formula using Cl and Cm coefficients :

q x AreaWing x MACWing CmWing = - LAElev x q x AreaElev x ClElev 

where q is the dynamic pressure.

Thus :

ElevElev
WingWing

ElevElev
Wing ClTVCl

AreaMAC
AreaLA

Cm ×−=
×

×
−=
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Tail Volume (3)

ElevElev
WingWing

ElevElev
Wing ClTVCl

AreaMAC
AreaLA

Cm ×−=
×

×
−=

The elevator's 
influence increases 
with the lever arm

The elevator's 
influence increases 

with its area

The elevator has less influence 
as the main wing grows wider 
and as its surface increases

We understand now that the tail volume is a measure of 
the elevator's capacity to balance the wing's self 

pitching moment
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Tail Volume (4)

ElevElev
WingWing

ElevElev
Wing ClTVCl

AreaMAC
AreaLA

Cm ×−=
×

×
−=

 The formula above tells us only that the higher the TV, the greater 
the elevator's influence shall be

 It does not give us any clue about the plane's stability
 It tells us nothing on the values and on the signs of Cm and Cl
 This is a necessary condition, but not sufficient : we need to know 

more on pitching and lifting coefficients

 Thus, an adequate value for the tail volume is not a 
condition sufficient for stability
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A little more complicated : V-tails

The angle δ  has a double influence: 
1. It reduces the surface projected on the horizontal plane
2. It reduces the projection of the lift force on the vertical plane

… after a little math:
Effective_area = AreaElev  x  cos²δ

The method is borrowed from 
Master Drela

(may the aerodynamic Forces 
be with him)

δ

Projected area

Projected Lift

WingWing

2
ElevElev
AreaMAC

cosAreaLA
TV

×
δ××

=

Lift
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The Static Margin : a useful concept

 First the definition

 A positive static margin is synonym of stability
 The greater is the static margin, the more stable the sailplane will be
 We won't say here what levels of static margin are acceptable… too 

risky… plenty of publications on the matter also
 Each user should have his own design practices
 Knowing the NP position and the targeted SM, the CG position can be 

deduced…= XNP - MAC x SM
 …without guarantee that this will correspond to a positive lift nor to 

optimized performances

Wing
CGNP

MAC
XXSM −

=
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How to use XFLR5 to position the CG

 Idea N°1 : the most efficient
 Forget about XFLR5
 Position the CG at 30-35% of the Mean Aero Chord 
 Try soft hand launches in an area with high grass
 Move progressively the CG backwards until the plane glides 

normally
 For a flying wing

• Start at 15%
• Set the ailerons up 5°-10°
• Reduce progressively aileron angle and move the CG backwards

 Finish off with the dive test

 Works every time !
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How to use XFLR5 to position the CG

 Idée N°2 : Trust the program
 Re-read carefully the disclaimer
 Find the Neutral Point as explained earlier
 Move the CG forward from the NP…
 … to achieve a slope of Cm = f(α) comparable to that of a model 

which flies to your satisfaction, or
 … to achieve an acceptable static margin
 Go back to Idea N°1 and perform a few hand launches
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Summarizing on the 4-graph view of XFLR5

α

Cl

α

Cm 
Depending on the 
CG position, get 
the balance angle 

αe such that Cm = 0


Check that Cl>0 

for α = αe 

α

XCP 
It is also possible to 

check that 
XCP =XCmRef

for α = αe 

α0

Singularity 
for the zero-
lift angle α0

αe

αe

αe

α

Cl/Cd

αe


Unfortunately, no 

reason for the 
performance to 

be optimal

Iterations are required to find the best compromise
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Consequences of the incidence angle
 To achieve lift, the wing must have an angle of attack greater 

than its zero-lift angle 
 This angle of attack is achieved by the balance of wing and 

elevator lift moments about the CG
 Three cases are possible

 Negative lift elevator
 Neutral elevator 
 Lifting elevator

 Each case leads to a different balanced angle of attack
 For French speakers, read Matthieu's great article on 

http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf

http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf
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Elevator Incidence and CG position
 The elevator may have a positive or negative lift

 Both configurations are possible
 The CG will be forward of the wing's CP for an elevator with 

negative lift
 "Within the acceptable range of CG position, the glide ratio does 

not change much" (M. Scherrer 2006)

Wing CP

CG

Elev CP

Wing CP

Elev CP

Elevator has a negative 
incidence vs. the wing

Elevator has a neutral or 
slightly negative incidence

NP NP
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The case of Flying Wings

No elevator
The main wing must achieve its own stability
Two options

 Self stable foils
 Negative washout at the wing tip
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Self-Stable Foils

 The notion is confusing : The concept covers those 
foils which make a wing self-stable, without the help 
of a stabilizer

 Theory and analysis tell us that a foil's Neutral Point 
is at distance from the leading edge = 25% x chord

 But then… all foils are self-stable ??? All that is 
required is to position the CG forward of the NP

 What's the difference between a so-called self-
stable foil and all of the others ???

Let's explore it with the help of XFLR5
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A classic foil

Consider a rectangular wing with uniform chord =100 mm, with a NACA 1410 foil 
reputedly not self-stable

Calculations confirm that the 
NP is at 25% of the chord

Unfortunately, at zero pitching 
moment, the lift is negative, 

the wing does not fly.
That's the problem… 

NACA 1410

It is usually said of 
these airfoils that 

their zero-lift 
moment coefficient 

is negative
Cm0 < 0

Note : this analysis can also be done in non-linear conditions with XFoil
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A self-stable foil
Consider the same rectangular wing with chord 100mm, with an Eppler 186 foil 
known to be self-stable

The NP is still at 25% of the 
chord

It would be more intuitive to say "the 
zero-moment lift is positive" : 

Cl0 > 0 , the wing flies!

Eppler 186

It is usually said of these 
airfoils that "the zero-lift 

moment is positive", 
Cm0 > 0

which doesn't tell us much
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A more modern way to create a self-stable wing

CG

 The consequence of the negative lift at the tip is that the total lift will be less than 
with the classic wing

 Let's check all this with XFLR5

Lift at the root

Lift at the tip

A classic 
sailplane wing

A flying wing with 
negative washout 

at the tip The positive 
moment at the tip 

balances the 
negative moment at 

the wing's root

F

Lift at the root

Negative lift at the tip
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Model data

Consider a simple wing
 First without washout, 
 Then with -6° washout at tip
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Wing without washout

Consider a static margin =  10%

Unfortunately, at zero pitching moment, the lift 
is negative (Cl<0) : the wing does not fly
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Wing with washout
At zero pitching moment, the lift is slightly positive :

It flies !

Let's visualize in the next slide the 
shape of the lift for the balanced a.o.a 

αe=1.7°

Consider a static margin =  10%
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Lift at the balanced a.o.a

Positive lift at the root

Negative lift at the tip

Part of the wing lifts the wrong way : a flying wing exhibits low lift
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Stability and Control analysis

So much for performance… but what about 
stability and control ?
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What it's all about

 Our model aircraft needs to be adjusted for performance, 
but needs also to be stable and controllable.
 Stability analysis is a characteristic of "hands-off controls" 

flight
 Control analysis measures the plane's reactions to the pilot's 

instructions
 To some extent, this can be addressed by simulation
 An option has been added in XFLR5 v6 for this purpose
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Static and Dynamic stability

Statically
unstable

Statically 
stable

time

Response

time

Response

Dynamically stable Dynamically unstable
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Sailplane stability

 A steady "static" state for a plane would be defined as a 
constant speed, angle of attack, bank angle, heading angle, 
altitude, etc.

 Difficult to imagine

 Inevitably, a gust of wind, an input from the pilot will disturb 
the plane

 The purpose of Stability and Control Analysis is to evaluate 
the dynamic stability and time response of the plane for such 
a perturbation

 In the following slides, we refer only to dynamic stability
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Natural modes

 Physically speaking, when submitted to a perturbation, a 
plane tends to respond on "preferred" flight modes

 From the mathematic point of view, these modes are called 
"Natural modes" and are described by 
 an eigenvector, which describes the modal shape
 an eigenvalue, which describes the mode's frequency and its 

damping
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Natural modes - Mechanical

 Example of the tuning fork

Shock perturbation
 preferred response on A note 

= 440 Hz

time

Amplitude response

The sound decays with time
The fork is dynamically stable… not really a surprise

T = 1/440 s

vibration
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Natural modes - Aerodynamic

 Example of the phugoid mode

Trajectory response

Steady level flight

Phugoid period
Perturbation 
by a vertical 
gust of wind

The plane returns 
progressively to its 
steady level flight

= dynamically stable
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The 8 aerodynamic modes

 A well designed plane will have 4 natural longitudinal modes 
and 4 natural lateral modes

Lateral

1 spiral mode
1  roll damping mode
2 Dutch roll modes

Longitudinal

2 symmetric phugoid modes
2 symmetric short period 

modes
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The phugoid
… is a macroscopic mode of exchange between the Kinetic and 

Potential energies

Russian Mountains :
Exchange is made by 

the contact force

Aerodynamic :
Exchange is made by 

the lift force

Slow, lightly damped, stable or unstable
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The mechanism of the phugoid

Dive

 At iso-Cl, The lift 
increases as the square power 

of the speed
 L = ½ ρ  S V² Cl

The sailplane 
accelerates

α Constant 
 Cl constant

The sailplane rises 
and slows downThe lift 

decreases

Relative wind

α

α

time

Response
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The short period mode

 Primarily vertical movement and pitch rate in the same phase, 
usually high frequency, well damped

time

Response

The mode's 
properties are 

primarily driven by 
the stiffness of the 
negative slope of the 

curve Cm=f(α)
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Spiral mode

 Primarily heading, non-oscillatory, slow, generally unstable

The mode is initiated by a 
rolling or heading disturbance.
This creates a positive a.o.a. on 
the fin, which tends to 
increase the yawing moment

time

Response

Requires pilot input to 
prevent divergence !
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Roll damping

 Primarily roll, stable

1. Due to the rotation about the x-axis, the 
wing coming down sees an increased a.o.a., 
thus increasing the lift on that side. The 
symmetric effect decreases the lift on the 
other side.

2. This creates a restoring moment opposite 
to the rotation, which tends to damp the 
mode

time

Bank angle



Revision 2.1  – Copyright A. Deperrois - November 2010

Dutch roll
 The Dutch roll mode is a combination of yaw and roll, phased 

at 90°, usually lightly damped

 Increased lift and drag on 
starboard side, decreased lift 
and drag on port side

 The lift difference creates a 
bank moment to port side

 The drag difference creates a 
yawing moment to starboard

 Plane 
rotates to 
port side

 Plane 
rotates to 
starboard

 Plane banks to port 
side and reverses yaw 

direction

 Plane banks 
to starboard

φ

ψ








φ

ψ

Rear view

Top view
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Modal response for a reduced scale plane

 During flight, a perturbation such as a control 
input or a gust of wind will excite all modes in 
different proportions :
 Usually, the response on the short period and the roll 

damping modes, which are well damped, disappear quickly
 The response on the phugoid and Dutch roll modes are 

visible to the eye
 The response on the spiral mode is slow, and low in 

magnitude compared to other flight factors. 
It isn't visible to the eye, and is corrected unconsciously 
by the pilot
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Modal behaviour

 Some modes are oscillatory in nature…
 Phugoid, 
 Short period
 Dutch roll

 …and some are not
 Roll damping
 Spiral

Defined by
1. a "mode shape" or eigenvector
2. a natural frequency
3. a damping factor

Defined by
1. a "mode shape" or eigenvector
2. a damping factor
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The eigenvector

 In mathematical terms, the eigenvector provides information 
on the amplitude and phase of the flight variables which 
describe the mode, 

 In XFLR5, the eigenvector is essentially analysed visually, in 
the 3D view

 A reasonable assumption is that the longitudinal and lateral 
dynamics are independent and are described each by four 
variables



Revision 2.1  – Copyright A. Deperrois - November 2010

The four longitudinal variables

 The longitudinal behaviour is described by
 The axial and vertical speed variation about the steady state 

value Vinf = (U0,0,0)

• u = dx/dt - U0

• w = dz/dt
 The pitch rate q = dθ /dt
 The pitch angle θ

 Some scaling is required to compare the relative size of 
velocity increments "u" and "w" to a pitch rate "q" and to an 
angle "θ  "

 The usual convention is to calculate
 u' = u/U0, w' = w/U0, q' = q/(2U0/mac), 
 and to divide all components such that θ  = 1
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The four lateral variables

 The longitudinal behaviour is described by four variables
 The lateral speed variation v = dy/dt about the steady state 

value Vinf = (U0,0,0)
 The roll rate p = dφ /dt
 The yaw rate r = dψ/dt
 The heading angle ψ

 For lateral modes, the normalization convention is 
 v' = u/U0, p' = p/(2U0/span), r' = r/(2U0/span), 
 and to divide all components such that ψ = 1
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Frequencies and damping factor
 The damping factor ζ is a non-dimensional coefficient
 A critically damped mode, ζ = 1, is non-oscillating, and returns slowly to steady state
 Under-damped (ζ < 1) and over-damped (ζ > 1) modes return to steady state slower 

than a critically damped mode
 The "natural frequency" is the frequency of the response on that specific mode
 The "undamped natural frequency" is a virtual value, if the mode was not damped
 For very low damping, i.e. ζ << 1, the natural frequency is close to the undamped 

natural frequency

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ζ=0.15
ζ=0.5
ζ=1
ζ=2

Underdamped

Critically 
damped

Overdamped
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The root locus graph
 This graphic view provides a visual interpretation of the frequency and damping of a mode 

with eigenvalue λ = σ1 + iω N

 The time response of a mode component such as u, w, or q, is

 ω N is the natural circular frequency and ω N/2 π is the mode's natural frequency

 is the undamped natural circular frequency

 σ1 is the damping constant and is related to the damping ratio by σ1 = -ω 1ζ

 The eigenvalue is plotted in the (σ1, ω N/2 π) axes, i.e. the root locus graph

( )tit N1kee.k)t(f ω+σλ ==

λ

σ

ω/2 π

Imaginary part /2π

Real part

2
N

2
11 ω+σ=ω
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The root locus interpretation

 λ Α corresponds to a damped oscillatory mode

 λ Β corresponds to an un-damped, non-oscillatory mode

Negative damping constant = dynamic stability
The more negative, the higher the damping

Positive damping constant 
= dynamic instability

λΑ

σΑ

ω Α/2 π

The further away 
from the ω=0 axis, 

the higher the mode's 
frequency 

Eigenvalues on the ω=0 
axis are non-oscillatory

λΒ =  
σΒ

Imaginary part /2π

Real part
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The typical root locus graphs

Imaginary part /2π

Real part

Longitudinal

Two symmetric 
short period 

modes

Two symmetric 
phugoid modes

Imaginary part /2π

Real part

Lateral

Two 
symmetric 
Dutch roll 

modes

One roll 
damping mode

One spiral 
mode
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Stability analysis in XFLR5
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One analysis, three output

Open loop dynamic 
response

Forced input 
dynamic response

Natural modes

• "Hands off" control

• Provides the plane's 
response to a 
perturbation such as a 
gust of wind

• Provides the plane's 
response to the 
actuation of a control 
such as the rudder or 
the elevator

• Describe the 
plane's response 
on its natural 
frequencies

Stability 
Analysis
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Pre-requisites for the analysis

 The stability and control behavior analysis requires that the 
inertia properties have been defined

 The evaluation of the inertia requires a full 3D CAD program
 Failing that, the inertia can be evaluated approximately in 

XFLR5 by providing
 The mass of each wing and of the fuselage structure
 The mass and location of such objects as nose lead, battery, 

receiver, servo-actuators, etc.

 XFLR5 will evaluate roughly the inertia based on these 
masses and on the geometry

 Once the data has been filled in, it is important to check 
that the total mass and CoG position are correct
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Description of the steps of the analysis
Definition of geometry, 

mass and inertia

Definition of the 
analysis/polar

Analysis

Post-Processing

3D-eigenmodes Root locus graph Time response

Im/2π

Re time

Response
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The time response view : two type of input 

time

Response

time

Control actuation

Ramp time

∆ Control 
amplitude

 Perturbation

time

∆ Flight variable
(u,w,q) or (v,p,r)

00
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The 3D mode animation

 The best way to identify and understand a mode shape ?
 Note : 

 The apparent amplitude of the mode in the animation has no 
physical significance.

 A specific mode is never excited alone in flight – the response is 
always a combination of modes.
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Example of Longitudinal Dynamics analysis
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Second approximation for the Short Period Mode

 Taking into account the dependency to the vertical velocity 
leads to a more complicated expression

0
*

u2
MACt = 3

y
y

MAC.S.

I8
Î

ρ
=

MAC.S.
m2

ρ
=µ

α∂
∂=α

m
m

CC
α∂

∂=α
zz

CC
Cmα and Czα are the slopes of the curves 
Cm = f(α) and Cz = f(α). The slopes can be 
measured on the polar graphs in XFLR5

µ
= α

*
z

t2

C
B

y
2*
m

Ît

C
C α−=

C4B
2
1F 2

2 +−
π

=

Despite their complicated appearance, these formula can 
be implemented in a spreadsheet, with all the input values 

provided by XFLR5

u0 = horizontal speed



Revision 2.1  – Copyright A. Deperrois - November 2010

Lanchester's approximation for the Phugoid

 The phugoid's frequency is deduced from the 
balance of kinetic and potential energies, and is 
calculated with a very simple formula

0
ph u

g
2

1F
π

=

g is the gravitational constant, i.e. g = 9.81 m/s
u0 is the plane's speed
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Numerical example – from a personal model sailplane

 Plane and flight Data

 Results

u0 = 16.20 m/s
α = 1.05 °
q = 160.74 Pa

Cx = 0.0114
Cz = 0.1540

dCm/dα = -1.9099
dCz/dα = -5.3925

Graphic Analysis 

F1 F2 XFLR5 v6 Fph XFLR5 v6

Frequency (Hz) = 4.45 4.12 3.86 0.136 0.122

Period (s) = 0.225 0.243 0.259 7.3 8.2

Short Period Phugoid

MAC = 0.1520 m²
Mass = 0.5250 kg

Iyy = 0.0346 kg.m²
S = 0.2070 m²
ρ = 1.225 kg/m3
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Time response

 There is factor 40x between the numerical frequencies of both 
modes, which means the plane should be more than stable

 A time response analysis confirms that the two modes do not 
interact
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-0.08
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-0.04

-0.02

0.00

0.02
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Pitch rate

Pitch Angle Phugoid 
mode

Short Period Mode
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About the Dive Test
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About the dive test 
(scandalously plagiarized from a yet unpublished article 
by Matthieu, and hideously simplified at the same time) 

How is this test 
related to what's been 
explained so far?

Forward CG

Slightly forward CG

Neutral CG



Revision 2.1  – Copyright A. Deperrois - November 2010

Forward CG

 If the CG is positioned forward, the plane will enter the 
phugoid mode
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Stick to the phugoid

 As the plane moves along the phugoid, the apparent wind 
changes direction

 From the plane's point of view, it's a perturbation
 The plane can react and reorient itself along the trajectory 

direction, providing
 That the slope of the curve Cm = f(α) is stiff enough
 That it doesn't have too much pitching inertia
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Summarizing :

α

α

• The CG is positioned forward 
• = stability
• = the wind vane which follows 

the wind gusts

 The two modes are un-coupled
 The relative wind changes direction along the phugoid…
 … but the plane maintains a constant incidence along the 

phugoid, just as the chariot remains tangent to the slope
 The sailplane enters the phugoid mode

1. The CG is positioned forward
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2.The CG is positioned aft

•Remember that backward CG = instability = the wind vane which 
amplifies wind gusts

 The two modes are coupled
 The incidence oscillation α(t) amplifies the phugoid,
 The lift coefficient is not constant during the phugoid
 The former loop doesn't work any more
 The phugoid mode disappears
 No guessing how the sailplane will behave at the dive test

(It's fairly easy to experiment, though)

α(t)
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That's all for now

Good design and nice flights 

Needless to say, this presentation owes a lot to Matthieu Scherrer ; thanks Matt !
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